
European Journal of Operational Research 226 (2013) 286–292
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Decision Support

Revisiting a game theoretic framework for the robust railway network
design against intentional attacks

Federico Perea a,⇑, Justo Puerto b

a Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camino de Vera sn., 46022 Valencia, Spain
b Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Calle Tarfia sn., 41012 Sevilla, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 April 2012
Accepted 10 November 2012
Available online 27 November 2012

Keywords:
Robust network design
Game theory
Protection resource allocation
Equilibrium
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.ejor.2012.11.015

⇑ Corresponding author. Tel.: +34 654111231; fax:
E-mail addresses: perea@eio.upv.es (F. Perea), puer
This paper discusses and extends some competitive aspects of the games proposed in an earlier work,
where a robust railway network design problem was proposed as a non-cooperative zero-sum game in
normal form between a designer/operator and an attacker. Due to the importance of the order of play
and the information available to the players at the moment of their decisions, we here extend those pre-
vious models by proposing a formulation of this situation as a dynamic game. Besides, we propose a new
mathematical programming model that optimizes both the network design and the allocation of security
resources over the network. The paper also proposes a model to distribute security resources over an
already existing railway network in order to minimize the negative effects of an intentional attack. For
the sake of readability, all concepts are introduced with the help of an illustrative example.
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1. Introduction

Terrorist attacks have often targeted collective transportation
networks, specially railways. Examples of such attacks are numer-
ous: 1995 Paris attack, 2004 Madrid train bombings, 2005 London
bombings, 2010 Moscow metro bombings, to mention only a few.
This is one of the reasons why the operators of these transportation
modes should:

� Try to design a network that efficiently works in case one of its
components fails (the so-called robustness of the network),
which is addressed in the network design phase. In this paper
we will consider that such failures are caused by intentional
attacks.
� Once the network is built, distribute the available security
resources so that the damage caused by potential attacks is
minimized.

The robustness analysis of transportation networks has been
widely analyzed in the literature from different points of view.
For instance, Laporte et al. (2011) consider that a railway network
is robust when passengers have several options to reach their des-
tination. Atamturk and Zhang (2007) and Ukkusuri et al. (2007)
consider robustness of a transportation network with respect to
uncertainty in the origin–destination matrix.
ll rights reserved.

+34 963877499.
to@us.es (J. Puerto).
The relationship between game theory and robust transporta-
tion network design has attracted lots of attention. A game is a
decision process in which several agents (called players) with pos-
sibly conflicting objectives converge. At the end of the process each
player receives a payoff, which may be affected by the decision of
other players. Roughly speaking, games can be divided into two
main branches: cooperative games, in which players are allowed
to enforce cooperative behavior; and noncooperative games, in
which players compete and no cooperation between them is
allowed. The reader may consult Forgö et al. (1999) or Owen
(1995) for a complete introduction to game theory. The models
presented in this paper follow a competitive scheme.

A non-cooperative game can be defined as follows: assume
there are n players, and let Si be the set of possible strategies (deci-
sions) available for player i, i = 1, . . . ,n. Let (s1, . . . ,sn) be a combina-
tion of strategies of the n players, where si 2 Si is the strategy
chosen by player i. Let ui: S1 � � � � � Sn be the payoff function of
player i, and therefore let ui(s1, . . . ,sn) be the payoff received by
player i if players act according to the strategies (s1, . . . ,sn). This
game can be represented as:

G ¼ fS1; . . . ; Sn; u1; . . . ;ung:

Game theory has already been applied to model problems in
transportation (the reader is referred to Hollander and Prashker
(2006) for a review of such applications). In a more recent paper,
Lownes et al. (2011) presents an iterative process for measuring
network vulnerability to edge disruptions in a game between a
router (who aims at minimizing travel costs) and a network tester
(who aims at maximizing travel costs by disabling network links).

http://dx.doi.org/10.1016/j.ejor.2012.11.015
mailto:perea@eio.upv.es
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Fig. 1. Test network. Over each edge we have two numbers: the first one is the
necessary cost to build the corresponding edge, the second one is the necessary
time to traverse it using the railway. By each node we have the construction cost of
the corresponding station. The origin destination (O/D) demands gpq and their travel
times via the alternative mode vpq for each demand pair (p, q) 2W are given by
matrices G and V, see Appendix A.
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Game theory has also been used to model and design defen-
sive strategies against intentional attacks in different settings. In
Bier et al. (2007) a sequential situation in which one attacker
can attack one of two locations protected by one defender is
modeled. They discuss on whether it is better to let the attacker
know your defense plans or not and they prove that, in equilib-
rium, it might be optimal for the defender to leave locations
unprotected. Bier et al. (2008) discusses how to allocate a limited
budget in order to defend multiple potential targets (cities) and
how such optimal allocation depends on: cost effectiveness of
security investments, how the defender values the potential tar-
gets and how certain the attacker’s target valuation is. Golany
et al. (2009) distinguishes between probabilistic defense, which
aims at fighting chance, and strategic defense, which aims at
fighting intentional attacks. The authors prove that, under proba-
bilistic threats, one should invest security resources on priority
sites, whereas under intentional threats one should focus on
decreasing the potential damage in the most vulnerable sites.
More recently, Bakir (2011) analyzes the problem of allocating
security resources to defend from an attacker the trajectory of
cargo containers and models this situation as a Stackelberg game.
The author arrives at a similar conclusion as this paper does: in
equilibrium the defender should keep a level of security at each
site so that the expected damage is constant.

Our problem shares some features with the interdiction prob-
lem as introduced in Wood (1993), in which the aim is to attack
arcs on a capacitated network so that the maximum flow from a
source s to a sink t is minimized. Another interdiction problem
is proposed in Scaparra and Church (2008), in which protection
resource allocation is tackled so that the effects of intentional
attacks on a system of facilities are minimized. More recently,
Cappanera and Scaparra (2011) consider networks subject to
external disruptions in some of their components that may cause
traffic flow delays and propose an allocation of resources that pro-
tect the shortest path between a supply node and a demand node
in such a way that hits on protected components have no effect.
Their trilevel defender-attacker-user model is reduced to a bilevel
model.

As opposed to the network interdiction problem, in our mod-
els the operator aims to maintain the efficiency of the network
as much as possible. The efficiency is here measured as the
number of potential travelers that find such network more
attractive than the already existing competing transportation
network.

Although the railway network design problem in this paper is
based on Laporte et al. (2010), which in turn is based on Laporte
et al. (2011), two main new contributions from a methodological
point of view can be underlined: the application of dynamic game
theory to the problem introduced in Laporte et al. (2010), and the
modeling of a new security resource distribution problem over a
railway network as a Stackelberg game.

The rest of the paper is structured as follows. Section 2 is
devoted to introducing some previous concepts and models. Sec-
tion 3 studies the problem of designing a railway transportation
network that is robust against an intentional attack assuming
that the situation is dynamic (the attacker is allowed to itera-
tively place as many bombs as he/she wants) and the only strat-
egy of the designer is the choice of the network to be built. In
Section 4, we assume that the designer can also choose where
to locate a certain amount of security resources over the net-
work. In Section 5, we consider that the network is already built.
In this case the competition takes place between the attacker,
who wants to cause as much damage as possible, and the oper-
ator, who can decide where to set security resources over the
network. The paper closes with conclusions and some pointers
at future research.
2. Preliminaries

We consider the same railway network design (RND) problem
as in Laporte et al. (2010), which can be summarized as follows.
Over a geographical area, where there already exists a transporta-
tion mode (for instance a bus), a railway system is to be designed
or enlarged, with the following input data:

� A set N = {1,2, . . . ,n} of nodes representing potential sites for
stations is given.
� A set E # {(i, j): i, j 2 N, i < j} of m feasible edges linking the ele-

ments of N is known.
� Every feasible edge (i, j) 2 E has an associated length dij, which

can be interpreted as the necessary time to traverse the link
joining stations i and j.
� ci is the cost of building a station at node i, i 2 N, cij is the cost of

building link (i, j) 2 E. The available budget is limited by Cmax.
� The mobility pattern is given by a matrix G = (gpq): (p, q) 2W,

where W is the ordered index pair set: W = {(p, q): (p, q) 2 N},
also referred to as the set of demands. Therefore, gpq is the
expected number of travelers from station p to station q.
� The generalized cost of satisfying each demand (p, q) by the

complementary mode is vpq. In this application vpq is the time
to reach station q from station p using the competing transpor-
tation mode.

Example 1. As an example of our RND problem consider the net-
work depicted in Fig. 1. The network maximizing trip coverage in
this example is the one consisting of the following three lines:

L1 ¼ ð1;2;3;5;6;7Þ; L2 ¼ ð4;6;7Þ; L3 ¼ ð6;8Þ:

Each line is represented by its sorted set of stations. For
instance, L2 starts at node 4, continues to node 6, and ends at node
7. All lines run both ways. The trip coverage of a network is calcu-
lated as the number of travelers for whom using the railway net-
work is faster than using the alternative transportation mode.
This problem is proposed and solved in Laporte et al. (2010).

Our goal is to choose a subset of edges satisfying the budget
constraints, so that a certain objective function is optimized. Exam-
ples of such objective functions are trip coverage (to be maxi-
mized) or total traveling time (to be minimized). Therefore, our
RND problem reduces to

max
r2R

KðrÞ or min
r2R

KðrÞ;



Table 1
Optimal networks in terms of trip coverage. For instance, network r1 gives the highest
trip coverage (831). This network is divided into three lines, whose stations are given
within the parentheses in a sorted way.

Network Lines Trip coverage Time (seconds)

r1 (1,2,3,5,6,7), (4,6,9), (6,8) 831 14
r2 (2,1,3,5,6,8), (7,4,6,9) 825 25
r3 (1,2,3,5,64,8), (7,4,6,9) 795 39
r4 (1,3,4,7,6,8), (3,5,6,9) 792 42
r5 (1,3,4,6,8), (2,3,5,6,7) 791 43
r6 (1,3,2), (4,3,5,6,8), (6,9) 783 50
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where R is the set of feasible railway networks and K(r) is the objec-
tive function value attained by network r 2 R.

Unfortunately, not everything always works as planned and
therefore the robustness of the network must be taken into ac-
count. In this paper we consider possible failures in the normal
functioning of the transportation network links. Let K(r, e) be the
objective function value of network r if edge e fails (K(r) denotes
the value of network r assuming no failures have occurred). Note
that K(r, e) = K(r) for all e R r. In the rest of the paper we will assume
that K is a function to be maximized by the operator, like the trip
coverage of the network. The reader may note that the minimiza-
tion case can be studied analogously. The new objective could be:

1. to maximize (over all possible networks) the worst trip cov-
erage of the network when one edge unexpectedly fails
max
r2R

min
e2E

Kðr; eÞ;
(robustness against intentional attacks).
2. to maximize the expected trip coverage,
max
r2R

1�
X
e2E

de

 !
KðrÞ þ

X
e2E

deKðr; eÞ
( )

;

where de is the probability that edge e randomly fails, which is
known, (robustness against random failures).

The (possibly different) solutions to these problems are railway
networks expressed as a set of railway lines. These networks can be
calculated by solving mixed integer linear programming problems
of relatively large size, as shown in Laporte et al. (2010). In this
direction, we note that the effects that removing edges can provoke
in flows are not easily predicted. The same can happen when
removing vertices, as examined in Martonosi et al. (2011). They
identify key vertices and analyze the flow passing through them
as a way to study network disruptions.

2.1. RRND as a game in normal form

In the last section of Laporte et al. (2010) the robust network
design problem against intentional attacks was modeled as a non-
cooperative two-person zero-sum game in normal form, where:

1. Players: N = {OPERATOR(Player I), ATTACKER(Player II)}.
2. Strategies: SOPERATOR = R, SATTACKER = E.
3. Payoffs: vOPERATOR(r, e) = K(r, e), vATTACKER = � K(r, e).

We note that the number of strategies for the operator can be
enormous. In order to reduce such strategy set, we only consider
feasible networks whose trip coverage, in case no failures occur,
is greater than or equal to a minimum required value. This trunca-
tion is realistic because the network to be designed should, not
only be robust, but also (near) optimal in case everything works
fine. Consider the following example.

Example 2. Using the same input data as in Example 1, let us
assume that the minimum acceptable trip coverage is 790. In Table
1, the six best networks in terms of trip coverage are shown. In
order to calculate such networks, we first calculate r1 by solving
the deterministic RND problem, see Appendix A in Laporte et al.
(2010). Network rk+1 is calculated by solving the same problem
imposing that r1, . . . ,rk are not feasible. Although these problem
have been mathematically termed NP-hard, see Appendix B in
Laporte et al. (2010), for this instance they are calculated in
seconds. These computations, as well as those in the rest of the
paper, were done in GAMS 23, using CPLEX 11.2.1. The computer
used has 3 GB of RAM memory, and a 2.4 GHz processor. The sixth
network is dismissed because its trip coverage is lower than the
given threshold. Therefore the operator only has five feasible
strategies. In principle, the attacker can choose any of the 13
potential edges.

A saddle point is a strategy (r⁄, e⁄) that satisfies

Kðr�; e�Þ ¼ max
r2R

min
e2E

Kðr; eÞ ¼min
e2E

max
r2R

Kðr; eÞ ð1Þ

and (r⁄, e⁄) is a Nash equilibrium strategy, which means that no
player can benefit by changing its strategy unilaterally.

If no saddle point exists (which is our case) it is possible for
players to enlarge the available set of strategies by considering
probability vectors, and look for a saddle point in the enlarged
game, in which players can choose a convex combination of their
pure strategies, thus defining a mixed strategy.

Example 3. Continuing with the same example, Table 2 gives the
trip coverage of each network when each of the potential edges
fails. That is, the payoff of player I. Player II’s payoffs are the
opposite. This table has been populated by solving the robust
railway network design problem, see Laporte et al. (2010), impos-
ing that the corresponding network rk has to be built. Again,
although this problem is NP-hard, for instances of this size the
calculation can be done in seconds, as shown in the last row of the
table. The MaxMin strategy (the security level for player I) is to
build network r5, since this way the operator ensures 588 (the
minimum is attained when attacking edge (1,3)). The MinMax
strategy (the security level for the attacker) is to attack edge (6,8),
since this way he ensures that the trip coverage of the network will
not be larger than 615. This maximum is attained with network r2.
Since MaxMin – MinMax, no saddle point exists in pure strategies.
In behavioral (mixed) strategies, a saddle-point strategy is given if
player I builds r1 with probability 0.025, r2 with probability 0.281
and r5 with probability 0.694, and player II attacks edge e2 with
probability 0.079, edge e10 with probability 0.112 and edge e12

with probability 0.809. All this results in an expected trip coverage
of 596.293 (better than MaxMin for player I).

A normal form (as before) may not provide the full picture of
the decision process, since the order in which players act may be
important, as well as the information they have available at each
moment. The extensive form of the two-person zero-sum game
explicitly displays the dynamic character of the decision problem.
In our robust transportation decision process, player I first designs
the network and player II later attacks. In the next section the
game will be represented in extensive form. We shall see that such
representation gives a more realistic picture of the situation.

3. Robust design as a dynamic game

Let r1, . . . ,rn be the set of possible networks (strategies) for
player I, let e1, . . . ,em be the set of possible edges (strategies) for
player II. Denote by Kij = K(ri, ej), i = 1, . . . ,n, j = 1, . . . ,m. Remember
that, if ej R ri, then K(ri, ej) = K(ri). We note as well that we are
assuming that the attacker values the effect of his/her attacks in
a deterministic way. This assumption has been weakened in the



Table 2
Payoffs of player I: trip coverage of network ri when edge ej fails. The MaxMin and MinMax strategies appear in bold face type. Last column shows computational times (in
seconds) needed to calculate such K(ri, ej) values.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 Time
(1,2) (1,3) (2,3) (3,4) (3,5) (4,6) (4,7) (5,6) (6,7) (6,8) (6,9)

r1 723 831 629 831 569 657 831 490 674 588 647 78
r2 729 596 825 825 548 615 709 461 825 615 641 43
r3 687 795 596 795 536 585 679 457 795 585 611 54
r4 792 599 792 680 577 792 759 579 735 565 625 95
r5 791 588 665 712 670 711 791 655 639 589 791 26
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literature. For instance, Nikoofal and Zhuang (2012) allocates
defensive budgets assuming that the attacker’s valuation of targets
is unknown but belongs to bounded intervals. Therefore, for player
I there are n possible actions (strategies), c1 = ri, i = 1, . . . ,n. For
player II, however, because he observes the action of player I before
deciding his action, there exist mn possible strategies. One such
strategy is, for instance, c2(ri) = e1, for all i = 1, . . . ,n, which means
to attack edge e1 no matter which network is built. Another strat-
egy could be c2(ri) = e1 if i is even and c2(ri) = e2 otherwise. In Fig. 2,
a representation of a one-stage game with its information sets is
shown.

If we denote by J(c1, c2) the payoff of player I when player I and
player II employ the strategies c1 and c2, respectively, we say that
c�1; c�2
� �

is in saddle-point equilibrium if

J c1; c
�
2

� �
6 J c�1; c

�
2

� �
6 J c�1; c2

� �
and J� ¼ J c�1; c�2

� �
is known as the saddle-point value of the game.

One way to find a saddle point of the game in extensive form
consists of first transforming the game into one in normal form,
to then find a saddle-point strategy. Unfortunately, this may lead
us to an enormous matrix game (in our case, an n �mn matrix). In-
stead, the method for obtaining a pure strategy saddle-point of sin-
gle-act zero-sum games in extensive form in Basar and Olsder
(1999) will be adapted, resulting in the following procedure.

Proposition 1. For the previously defined dynamic game, the
following procedure provides a saddle-point equilibrium. Such equi-
librium coincides with the MaxMin strategy for the operator.
1. For each feasible network ri, let ji such that Ki;ji ¼minjKij:

2. Let i⁄ such that Ki� ;ji� ¼maxiKi;ji .
3. c�1 ¼ ri� is the saddle-point strategy of player I (the network

operator).
4. c�2ðriÞ ¼ eji� is the saddle-point strategy of player II (the

attacker).

c�1; c
�
2

� �
is the saddle-point strategy of the game, leading to the

actions u1 ¼ ri� ;u2 ¼ eji�
. The value of the game is K ri� ; eji�

� �
.

Proof. The process leads to a saddle-point equilibrium because it
is a mere adaptation of that in Basar and Olsder (1999). Note that
K ri� ; eji�
� �

¼maxiKðri; eji Þ ¼maximinjKðri; ejÞ, which is the MaxMin
strategy defined before (security level for player I). h
Fig. 2. Our example game as a single-act game in extensive form.
Remark 1. A more realistic picture could be modeled by allowing
that, once the network is built, the attacker can place bombs more
than once. Zero-sum games in which at least one player is allowed
to act more than once, and with possibly different information sets
at each level of play, are known as multi-act zero-sum games.
Within this class, our game belongs to the subclass of feedback
games, which satisfy:

1. At the time of his action, each player has perfect information
concerning the current level of play.

2. Information sets of the first-acting player (what he knows
about the situation of the game at each moment) at every
level of play are singletons, and the information sets of the
second-acting player at every level of play are such that
none of them include nodes corresponding to branches
emanating from two or more different information sets
of the other player.

Note that the designer/operator cannot redesign the network at
will, because designing and building a railway network is too
expensive. Therefore his strategies must be the same at every stage
of the game.

There is a recursive procedure to determine the saddle-point
strategies of a feedback game, see Basar and Olsder (1999). It is
easy to see that this procedure leads to player I choosing network
ri� and player II attacking edge ei� at each stage of the game. Note
that in the multi-stage representation of our game, saddle-point
strategies are merely a repetition of the minmax strategies
calculated for the former one-stage game. In any case, both
approaches represent an advance over the normal form represen-
tation where most of the times we have to resort to mixed
strategies to represent equilibria. Such mixed strategies are very
hard to implement and to explain to designers/managers.

4. A joint model for network design and security resource
allocation

In this section we propose a more general game in which
player I, the operator, can distribute a certain number of security
guards X 2 Zþ over the edges. Then, the set of strategies of
player I is defined as (ri, x), where ri is the network to be built
and x 2 Zm

þ is the distribution of security guards, where xj is
the number of guards assigned to edge ej, satisfying thatPm

j¼1xj 6 X: We will assume that the probability for an attack
made by player II over a certain edge to be successful is a
decreasing function on the number of guards located on that
edge. Therefore, let Kððri; xÞ; ejÞ be the expected trip coverage of
network ri when edge ej is attacked and player I distributes its
security resources according to x.

As we have justified in the previous section, if player II has per-
fect information about the strategy followed by player I (which
network has been built and which is the security distribution along
the edges) before an attack, the best player I can do is to build its
security level strategy, which consists of finding a network �r and a
security guard vector �x such that
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max
ðri ;xÞ

min
ej

Kððri; xÞ; ejÞ ¼min
ej

Kðð�r; �xÞ; ejÞ:

This problem can be modeled as:

max zmin þ a
Xn

i¼1

zi þ b
Xn

i¼1

Xm

j¼1

Kððri; xiÞ; ejÞ;

s:t: : Kððri; xiÞ; ejÞP zi; i ¼ 1; . . . ;n;

zmin 6 zi; i ¼ 1; . . . ; n;Xm

j¼1

xij 6 X; i ¼ 1; . . . ;n;

xij 2 Zþ; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m;

ð2Þ

where xij is the number of guards to be located on edge ej if ri is
built, zi is the minimum trip coverage of network ri when one of
the edges fails, and zmin is the minimum zi.

Note the second term in the objective function, which makes
the maximization of the average minimum trip coverage of a net-
work when edges are attacked a second objective, and the third
term, which makes the average security a third objective. There-
fore a and b are small positive numbers with a� b.

Remark. An instance of Kððri; xiÞ; ejÞ could be the following.
Assume that, if no guards are located on an edge, then the
probability of an attack on such edge to be successful is 1, whereas
if there are uj guards the probability of success is 0. Assuming that
having a number of guards between 0 and uj decreases the
probability of success linearly, we end up with:

Kððri; xÞ; ejÞ ¼
Kðri; ejÞ if xij ¼ 0;

Kðri; ejÞ þ
xij

uj
ðKðriÞ � Kðri; ejÞÞ if 0 < xij < uj;

KðriÞ if xij P uj:

8><
>:

Therefore, problem (2) can be written as a mixed integer linear pro-
gramming problem as follows:

max zmin þ a
Xn

i¼1

zi þ b
Xn

i¼1

Xm

j¼1

xij

uj
ðKðriÞ � Kðri; ejÞÞ;

s:t: : Kðri; ejÞ þ
xij

uj
ðKðriÞ � Kðri; ejÞÞP zi; i ¼ 1; . . . ; n;

zmin 6 zi; i ¼ 1; . . . ; n;Xm

j¼1

xij 6 X; i ¼ 1; . . . ;n;

xij 6 uj; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m;

xij 2 Zþ; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m:

ð3Þ
Example 4. As an example of this situation, consider the same
network as before, and assume that for any of the links, having
10 security guards guarantees total security and, therefore, no
attack is to be successful. Consider as well that the number of
guards available is X = 50. With this data, a solution to problem
(3) taking a = 10�4 and b = 10�7 is given in Table 3, whereas the
expected trip coverage of each network when each of the feasi-
ble links is attacked and guards are distributed according to
Table 3 is shown in Table 4. We note that both tables are
obtained from the solution to problem (3), which is solved in
around 0.2 seconds. Note as well that for solving this problem
one needs the data given in Tables 1 and 2.

The minimum expected coverage for each potential network
when one of the edges fails is: z1 = 752.5, z2 = 751.4, z3 = 719.4,
z4 = 747.2, z5 = 740.6, and therefore the security strategy for player
I is to build network r1 with the security distribution showed in
Table 3. This way the operator ensures an expected trip coverage
of, at least, 752.5 (no matter which edge the attacker decides to
attack). Note that in this case the attacker would prefer to attack
edge (6,7), since an attack in this edge would produce the highest
expected damage in the ridership. Therefore the actions ((r1,
(3,0,7,0,8,6,0,8,5,7,6)), (6,7)) derive a saddle-point strategy.

Note again that the optimal strategies for player I are MaxMin
strategies, but the corresponding solution network need not be the
same as in the games presented in Section 3 (note that these
models applied to our example resulted in network r5 as the
MaxMin strategy for the operator).
5. A model for security resource allocation

In this section we assume that the operator has already built net-
work r, but still the competition game between the operator and the
attacker continues. The operator can now install a security system
over the network that is difficult to modify and known by the at-
tacker. Therefore this situation is modeled as a Stackelberg game
in which the operator is the leader and the attacker is the follower.

Following the work in Bakir (2011), we now propose a problem
in which the attacker wants to locate a bomb so that the maximum
damage is caused to the network, and the operator wants to design
a security system that allows interdicting the possible attacks. Let Kj

be the cost incurred by the operator if a bomb is successfully deto-
nated on edge ej, and let pj 2 [0,1) be the probability that a bomb lo-
cated on edge ej is interdicted (both parameters are known by the
players). The cost to keep this probability is cðpjÞ ¼

dj

ð1�pjÞ
aj � dj,

where c(pj) can represent, for instance, the investment in a security
system to interdict a bomb on edge ej with probability pj, and dj is
the length of edge ej. This cost function, as noted in Bakir (2011)
and Bier et al. (2007), has some nice properties ðcð0Þ ¼ 0; c0 >
0; c00 > 0; limpj!1cðpjÞ ¼ þ1Þ. Assuming that the attacker tries to
locate a bomb where his expected payoff is maximized, that is, on
edge ej0 : j0 ¼ arg maxjfð1� pjÞKjg, the defender’s objective is to
minimize

min
Xm

j¼1

cðpjÞ þ ð1� pj0 ÞKj0 ;

s:t: : ð1� pjÞKj 6 ð1� pj0 ÞKj0 8j ¼ 1; . . . ;m; j – j0;

pj 2 ½0; 1�:

ð4Þ

Note that, in order to solve this problem, we first have to find
out which edge ej0 is. A first idea using brute force would be to solve
problem (4) for any possible edge ej0 , which does not seem to be an
appropriate method. The following theorem provides a more suit-
able way for finding an equilibrium of this game. We will prove
that, whenever the costs incurred by the operator when one bomb
explodes are sufficiently large (which is a logical assumption) the
equilibrium of this game is for the operator to choose its security
system so that the expected cost of not interdicting a bomb is con-
stant for every edge.

Theorem 1. Consider an instance of the Stackelberg game defined in
this section. If Kj is sufficiently large for all ej, the equilibrium is for the
operator to choose the interdiction probabilities pj so that (1 � pj)Kj is
constant for all j.
Proof. Consider the problem in (4). For convenience, define a new
variable z ¼ ð1� pj0 ÞKj0 . Let us apply the Karush–Kuhn–Tucker
(KKT) conditions for this problem, see Bazaraa et al. (1979). The
KKT conditions are necessary conditions for optimality. Because
the objective function is convex, and the constraints are linear,
KKT conditions are also sufficient.



Table 3
Optimal values of variables xij.

x (1,2) (1,3) (2,3) (3,4) (3,5) (4,6) (4,7) (5,6) (6,7) (6,8) (6,9)

r1 3 0 7 0 8 6 0 8 5 7 6
r2 3 7 0 0 8 7 4 8 0 7 6
r3 3 0 7 0 8 7 4 8 0 7 6
r4 0 8 0 6 8 0 0 8 3 9 8
r5 0 8 6 4 6 4 0 7 7 8 0

Table 4
Values of expected trip coverage Kððri ; xiÞ; ejÞ assuming the values of xi as given in Table 3.

K (1,2) (1,3) (2,3) (3,4) (3,5) (4,6) (4,7) (5,6) (6,7) (6,8) (6,9)

r1 755.4 831.0 770.4 831.0 778.6 761.4 831.0 762.8 752.5 758.1 757.4
r2 757.8 756.3 825.0 825.0 769.6 762.0 755.4 752.2 825.0 762.0 751.4
r3 719.4 795.0 735.3 795.0 743.2 732.0 725.4 727.4 795.0 732.0 721.4
r4 792.0 753.4 792.0 747.2 749.0 792.0 759.0 749.4 752.1 769.3 758.6
r5 791.0 750.4 740.6 743.6 742.6 743.0 791.0 750.2 745.4 750.6 791.0
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The Lagrangean function of problem (4) is:

Lðp1; . . . ;pm; z; k1; . . . ; kmÞ ¼
Xm

j¼1

dj

ð1� pjÞ
aj
� dj

 !
þ zþ

Xm

j¼1

ðð1

� pjÞKj � zÞkj:

The KKT conditions for this case consist of solving the following
system of equations:

@L
@pj
¼ ajdj

ð1� pjÞ
ajþ1 � Kjkj ¼ 0; ð5Þ

1�
Xm

j¼1

kj ¼ 0: ð6Þ

If (1 � pj)Kj is constant for all ej, in particular we have that (1 � pj)-
Kj = z⁄ "j = 1, . . . ,m (or equivalently pj ¼ 1� z�

Kj
). Therefore a solution

to the previous system of equations satisfies:

k�j ¼
ajdj

Kjðz�=KjÞajþ1 ; ð7Þ

Xm

j¼1

ajdj

Kjðz�=KjÞajþ1 ¼ 1; ð8Þ

p�j ¼ 1� z�

Kj
: ð9Þ

We first see that the value of z⁄ is well defined. Let

f ðzÞ ¼
Pm

j¼1
ajdj

Kjðz=KjÞ
ajþ1. It is easy to see that limz!1f ðzÞ ¼ 0;

limz!0þ f ðzÞ ¼ þ1, and that f is a continuous function in (0,+1).
Applying Bolzano’s theorem we get that there exists z⁄ 2 (0,+1)
so that f(z⁄) = 1. For p�j to be well defined, we need to impose
0 6 p�j < 1 (note that by the definition of the cost function c(�) we
have that pj – 1), which is guaranteed if Kj > z⁄ or, as we stated in
the hypotheses of the theorem, Kj is sufficiently large for every
j. h

In other words, this theorem says that if the costs caused by the
attack are large enough, then what the operator should do is to bal-
ance its expected loss at all edges, so that the maximum damage is
minimized. Note as well that if the costs Kj are small enough, not
doing anything might be optimal (that is, make all pj = 0). It goes
without saying that the incurred costs for the operator in case
we are facing a terrorist attack (Kj) are large enough, and therefore
Theorem 1 is valid for these situations. Let us see an example of the
application of this result.

Example 5. Assume the operator has already designed network r1

as defined in Example 2 and suggested in Example 4, and assume
as well that the loss incurred by the operator if a bomb explodes in
edge ej is Kj = 1000(K(r1) � K(r1, ej)) = 831,000 � 1000K(r1, ej) (the
values of K(r1, ej) are shown in Table 2). The choice of dj and aj is
constant and equal to 1 for every j. As a conclusion to the previous
theorem, the reader may note that an optimal solution to problem

min
Xm

j¼1

cðpjÞ þ z;

s:t: : ð1� pjÞKj 6 z 8j ¼ 1; . . . ;m;

pj 2 ½0; 1�;

ð10Þ

coincides with the solution to problem (4) for any j0, and is:

p�1¼0:988; p�3¼0:994; p�5¼0:995; p�6¼0:993; p�8¼0:996;
p�9¼0:992; p�10¼0:995; p�11¼0:993; z� ¼1292:672¼Kjð1�pjÞ 8j;

with an optimal value of 2577.343. This optimal value is the cost in-
curred by the operator if the attacker explodes the bomb at any
edge plus the cost to keep probabilities p�j . The execution time for
this non-linear programming problem, using CONOPT with GAMS
23, is around 0.2 s.
6. Conclusions

In this paper we have extended some previously introduced
models about the competition between a transportation network
operator and an attacker. The operator wants to design a network
that optimizes certain objective function and the attacker wants to
produce as much damage in the network as possible by placing a
bomb on one of the network links. This situation is modeled as a
two-player non-cooperative game in which player I is the network
operator and player II is the attacker. The strategies for player I are
the possible networks to be built and the strategies for player II are
the edges that can be attacked.

The first idea expressed here is that the models presented in
previous papers miss the dynamic aspects of these situations: the
attacker can attack many times. We have proven that, in the dy-
namic version of the game, the best strategy for the operator is
to design a network that optimizes the worst case scenario.

We have also proposed variations of this game, in which the oper-
ator can manage the security system in the network. The first model
assumes that the strategies for the operator are the possible net-
works to be built and a distribution of security guards over the net-
work, the strategies for player II remain the same: the set of network
edges. We have modeled this situation as a mathematical mixed
integer programming problem that, depending on the function that
models the probability of success in the attacks of player II, can be
linear. An example has shown that the resulting network need not
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be the same as in the dynamic model presented before, where the
only strategies for the operator where which network to build.

The last model introduced in this paper assumes that the net-
work has already been built and that the possible strategies for
player I are the investment on a security system: the more you in-
vest in one particular edge, the less likely to be successful an attack
on this edge is. This model assumes that the security system cannot
be changed easily and, therefore, in the dynamic version of the
game player I has to restrict to the same strategy at all the stages.
So this situation has been modeled as a Stackelberg game. We have
proven that an optimal strategy for the operator is to distribute the
security efforts in such a way that the expected cost incurred by the
operator does not depend on the attacker’s targeted edge.

This research line is still in progress, specially from the algorith-
mic point of view. The applicability of the models presented to
real-sized transportation networks is still an open issue. Calculat-
ing the payoff function is an NP-hard problem. For this reason a
first set of heuristics has been proposed in Garcia-Archilla et al.
(in press). Note that the application of heuristics would yield an
approximation of the payoff function, and the interesting research
line of approximated games, in which the characteristic or payoff
function is approximated would apply, see Perea (2011). Further
research will focus on efficient algorithms that help finding equi-
libria in the models presented.
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Appendix A. Matrices in example

G ¼

0 9 26 19 13 12 4 6 4
11 0 14 26 7 18 3 7 9
30 19 0 30 24 8 3 9 11
21 9 11 0 22 16 21 18 16
14 14 8 9 0 20 12 18 9
26 1 22 24 13 0 11 28 21
7 5 6 19 15 13 0 16 14
5 9 11 16 17 25 17 0 21
6 8 10 18 11 20 14 20 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

;

V ¼

0 1:6 0:8 2 1:6 2:5 4 3:6 4:6
2 0 0:9 1:2 1:5 2:5 3:2 3:5 4:5

1:5 1:4 0 1:3 0:9 2 3:3 2:9 3:9
1:9 2 1:9 0 1:8 2 2 3:8 4:1
3 1:5 2 2 0 1:5 3 2 3

2:1 2:7 2:2 1 1:5 0 2:5 3 2:5
3:9 3:9 3:9 2 3 2:5 0 2:5 2:5
5 3:5 4 4 2 3 2:5 0 2:5

4:6 4:5 4 3:5 3 2:5 2:5 2:5 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:
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